Monatshefte für Chemie 100, 766-786 (1969)

Schwingungsspektren und Normalkoordinatenanalyse einiger Methyl- und Trimethylsilyl-hydroxylamine

Von

H. Bürger, K. Burczyk und O. Smrekar

Aus dem Institut für Anorganische Chemie der Technischen Universität Braunschweig

Mit 4 Abbildungen

(Eingegangen am 3. Oktober 1968)

Die Infrarot- und Raman-Spektren folgender Hydroxylamin-Derivate wurden registriert und zugeordnet: $(CH_3)_3SiONH_2$ (1), $(CH_3)_3SiONHSi(CH_3)_3$, $(CH_3)_3SiON[Si(CH_3)_3]_2$ (3), CH_3ONH_2 (4), $CH_3ON[Si(CH_3)_3]_2$ (5), CH_3NHOCH_3 , $CH_3N[Si(CH_3)_3]OCH_3$, $(C_2H_5)_2NOH$ und $(C_2H_5)_2NOSi(CH_3)_3$. Eine Normalkoordinatenanalyse für NH₂OH, 1, 3, 4 und 5 zeigt, daß sich die Spektren durch Übertragung gleichbleibender Kraftkonstanten der Molekülfragmente wiedergeben lassen. O- und N-Substituenten beeinflussen die NO-Kraftkonstante nicht; die SiO- und SiN-Valenzkraftkonstanten sind mit 3,3 mdyn/Å bemerkenswert niedrig.

Vibrational Spectra and Normal Coordinate Analysis of Some Methyl- and Trimethylsilylhydroxylamines

The infrared and Raman spectra of the hydroxylamine derivatives quoted above were recorded and frequencies assigned. A normal coordinate treatment of NH₂OH, 1, 3, 4 and 5 showed that the spectra can be explained by a single force field set up by transferring force constants from the different fragments of the molecules. The NO stretching force constant remains unaffected by different substituents. The SiO and SiN stretching force constants are remarkably small (c. 3.3 mdyn/Å).

Einführung

Die in zwei Arbeiten^{1, 2} aus unserem Institut beschriebenen Trimethylsilyl- und Alkyl-trimethylsilyl-hydroxylamine stellen eine strukturell nahe verwandte Substanzklasse dar, die uns geeignet erschien, über ihre Schwingungsspektren Aussagen über Molekülgeometrie und Bindungsverhältnisse im Silyl- und Alkylhydroxylamin-System zu ermöglichen. Speziell die Frage, ob in der Gruppierung SiNO bzw. SiON andere Bindungsverhältnisse als im NH₂OH und NH₂OCH₃ einerseits und Silylaminen bzw. Alkoxysilanen andererseits vorliegen, veranlaßte uns, die Schwingungsspektren der verschiedenen Hydroxylamin-Derivate eingehend zu untersuchen.

Daneben bietet die Schwingungsspektroskopie die Möglichkeit, die Struktur des Trimethylsilylhydroxylamins festzulegen, für das zuerst eine Aminoxid-Atomfolge $(CH_3)_3SiNH_2O$ vermutet wurde³. Nicht zuletzt auf Grund der in dieser Arbeit mitgeteilten schwingungsspektroskopischen Ergebnisse erscheint heute für dieses Molekül die Struktur H_2N —O—Si(CH₃)₃ als gesichert.

Die trotz gleicher Bauelemente deutliche Verschiedenheit im Schwingungsverhalten der im folgenden aufgeführten Moleküle ließ es ratsam erscheinen, sich nicht auf eine Zuordnung über Analogieschlüsse zu beschränken, sondern zumindest für einige Systeme zu versuchen, über eine Normalkoordinatenanalyse eine detaillierte Beschreibung des Schwingungsverhaltens zu ermöglichen. Die Normalkoordinatenanalyse (NCA) schränkt besonders in all jenen Fällen die Unsicherheit in der Zuordnung und die sich daraus ergebende Fragwürdigkeit von Schlußfolgerungen stark ein, in denen Schwingungen auf Grund von Kopplungen uncharakteristisch sind. Eine Übertragung der an stärker gekoppelten Systemen gewonnenen Erfahrungen auf schwächer gekoppelte ist eher möglich als der umgekehrte Vorgang.

Wir haben von folgenden Hydroxylamin-Derivaten vollständige Schwingungsspektren aufgenommen:

CH_3ONH_2 4
$CH_3ON[Si(CH_3)_3]_2$ 5
CH ₃ NHOH
$(C_2H_5)_2NOH$ 8
$(C_2H_5)_2NOSi(CH_3)_3$ 9

Auf Grund des Molekültyps lassen sich nach dem folgenden Schema

¹ U. Wannagat und O. Smrekar, Mh. Chem. 100, 750 (1969).

² O. Smrekar und U. Wannagat, Mh. Chem. 100, 760 (1969).

³ U. Wannagat und J. Pump, Mh. Chem. 94, 141 (1963).

Gruppen von Potentialkonstanten übertragen bzw. spektrale Übergänge aufstellen:

Die NCA läßt sich damit auf die drei Typen

 $\begin{array}{c} \mathrm{H_2NOH} \\ \mathrm{H_2NOXY_3} \\ [(\mathrm{CH_3})_3\mathrm{Si}]_2\mathrm{NOXY_3} \end{array} \right\} \quad X = \mathrm{Si, C}; \ Y = \mathrm{CH_3, H} \end{array}$

reduzieren. Hierbei sollen folgende sinnvolle Vereinfachungen vorgenommen werden:

1. Vernachlässigung der CH- und NH-Valenzschwingungen.

2. Abgekürzte Berechnung der (CH₃)₃Si-Gruppe als Z_3 Si; Z-Masse = 15; s. hierzu⁴.

3. Vernachlässigung von Wechselwirkungen innerer Si(CH₃)₃- mit inneren XY_3 -Schwingungen über die NO-Brücke hinweg, z. B. in 3 und 5.

Die Zuordnung der übrigen Spektren (2, 6, 7 und 9) ergibt sich durch Kombination verschiedener, teilweise durch NCA erarbeiteter Zuordnungskriterien.

Schwingungsspektren

Hydroxylamin und Methylhydroxylamine

Das freie Hydroxylamin wurde bereits mehrfach schwingungsspektroskopisch untersucht; die Kristallspektren des H₂NOH bzw. D₂NOD⁵ sowie das Gasspektrum des H₂NOH⁶ sprechen für eine Atomfolge H₂NOH mit C_s-Symmetrie. Neben dem *trans*-Isomeren, das auch nach Aussagen einer Röntgenstrukturanalyse⁷ das wahrscheinlichere ist, liegt möglicherweise in kleineren Mengen ein *cis*-Isomeres vor. Ebenso

⁴ H. Bürger, Organomet. Chem. Rev. A, 3, 425 (1968).

⁵ R. E. Nightingale und E. L. Wagner, J. Chem. Physics 22, 203 (1954).

⁶ P. A. Giguère und I. D. Liu, Canad. J. Chem. 30, 948 (1952).

⁷ E. A. Meyers und W. N. Lipscomb, Acta crystallogr. 8, 583 (1955).

wurden die IR-Spektren aller Methylhydroxylamine in flüssiger und gasförmiger Phase im Bereich von 4000—420 cm⁻¹ eingehend untersucht⁸. Darüber hinaus darf die Molekülstruktur des CH₃ONH₂ auf Grund von Elektronenbeugungsuntersuchungen⁹ bzw. einer Röntgenstrukturanalyse am [CH₃ONH₃]Cl¹⁰ als gesichert gelten, so daß gerade für dieses Molekül eine NCA gut fundiert ist und lohnend erscheint.

Bis auf das NH_2OH selbst haben wir die IR- und Raman-Spektren aller Alkylhydroxylamine, die als Ausgangssubstanzen zur Darstellung der Trimethylsilyl-Verbindungen verwendet wurden, aufgenommen. Tab. 1 gibt die Spektren von CH_3NHOH (s. Abb. 1), NH_2OH und $(CH_3)_3SiONH_2$ zusammen

Abb. 1. Raman-Spektrum des CH₃NHOH

mit der von uns vorgeschlagenen Zuordnung wieder. Eine Diskussion der Zuordnung für NH_2OH und 1 wird im Zusammenhang mit der NCA gegeben.

Das von uns registrierte IR-Gasspektrum des CH_3ONH_2 deckt sich weitgehend mit dem in der Literatur beschriebenen⁸ (s. Tab. 3); lediglich im Bereich der NH- und CH-Valenz- sowie der CH₃-Deformationsschwingungen konnte die Bandenkontur besser aufgelöst werden.

Auf Grund der Raman-Daten dürfte die Zuordnung nach⁸ für das CH₃NHOH zwischen 800 und 1400 cm⁻¹ einer Umstellung bedürfen. 855 (Ra) und 1037 (IR) gehören zu den Valenzschwingungen der CNO-Brücke, während 842 (IR), 999 (IR), 1344/1387 (IR) und 1531 (IR) auf NH- und OH-Deformationen, 1146/1213 sowie die zwischen 1400 und 1500 cm⁻¹ gelegenen Schwingungen auf CH₃N-Schwingungen zurückgehen dürften. Allgemein muß dabei mit einer Kopplung von ρ CH₃ mit

⁸ M. Davies und N. A. Spiers, J. Chem. Soc. [London] 1959, 3971.

⁹ L. O. Brockway, J. Y. Beach und L. Pauling, J. Amer. Chem. Soc. 57, 2693 (1935).

¹⁰ A. Laurent und C. Rerat, Acta crystallogr. 17, 277 (1964).

H. Bürger u.a.:

Tabelle	1. Infrar	ot- und	Raman	-Spektren	von]	Hydroxylamin,
N-M	ethylhydro	xylamin	und O	-Trimethyl	silyl-h	ydroxylamin
тр. сі я	CH ₃ NHOH	D	NH ₂ OH	I (CH ₃);	SiONH	² Zuordnung

IR fl.8	IR fl.	Raman	IR gas ⁶	IR fl.	Raman	Zuordnung
				220 vw	212 s	ρ SiC ₃
				$243 \mathrm{w}$	$255~\mathrm{ms}$	δ _{as} SiC3
				300 s	$299 \mathrm{m}$	$\delta_s \operatorname{SiC}_3 +$
				$316 \mathrm{m}$		$+ \delta$ SiON
	$251 \mathrm{w}$		430 vw			τ
	$280 \mathrm{w}$					
457	$455~{ m s}$					8 CNO
				609 w	606 vsp	v_{s} SiC ₃
				692 w	691 s	v_{as} S1C ₃
				$723 \mathrm{m}$	723 vw	v SiO
				759 s	761 m	ps SiCH ₃
				847 vs	845 msh	pas SiCH ₃
					864 mp	ρ_{as} SiCH ₃
	040	0 9 0 -	T <i>eF</i>			oder v SiU
	842 SSHD	000 8	705 W			γ N H 2, γ (N O) H
004	000 ab					$\delta(\mathbf{N},\mathbf{O})\mathbf{H}$
994 III 954 a	999 SU 950 a	955 mm	805 m	000 ***	019 mm	0 (N,O)II
004 S	009 S	1024 a	695 III	909 VS	912 mp	V NO
1004 VS	1037 VS	1034 5	1115)			VUN
			1125 VS	1192 s	1192 vw	$ ho m NH_2$
1143 117	1146 m	1149 55	11205			8 (O N)H
1908 m	1912 g	1142 w 1900 wm				o NCHo
1200 11	1215 S	1203 wp	1357 g			NOH
	1397 w		1001 5			0 HOH
	1007 W			1253 vs	1258 w	8. SiCH.
				1301 vw	1200 1	609 + 692
				1410 vw	$1415 \mathrm{m}$	
				1445 vw		δ_{as} SiCH ₃
1405 m	1409 s	1410 m				δOH ass.8
1440 m	$1443 \mathrm{s}$	1441 s				$\delta_s \operatorname{CH}_3$
1469 m	1474 vs	1473 s				$\delta_{as} \operatorname{CH}_3$
	1531 s		$1605 \mathrm{m}$	1590 m	1598 w	δNH,δNH;
	$2794 \mathrm{m}$	2783 w)
$2921~{\rm sh}$	$2900 \ vs$	2899 v sp		2909 w	2894 vs	L CH
$2958 \mathrm{~s}$	2970 vs	2959 vsp				f ^m
	$2994 \mathrm{~sh}$	2984 s		$2964 \mathrm{s}$	2959 vs	J
	3166 sh					} .
	$3223 \mathrm{~shb}$					UNH .
3269 s	3285 vsb	3274 vsp	3297 m	$3255 \mathrm{w}$	$3265 \mathrm{m}$	(* 1111
	$3400 \mathrm{~sh}$		3350 w	$3326 \mathrm{m}$	$3335 \mathrm{w}$	J
3000						0.77
3500			3656 s			vOH

770

(CH ₃) ₃ IR fl.	SiONH2 Raman	(CH ₃) ₃ SiOI IR fl.	NHSi(CH ₃) ₃ Raman	(CH3)3SiON IR fl.	[Si(CH ₃) ₃] ₂ Raman	Zuordnung
			142 m		147 m)
			184 sp		186 s	
220 vw	$212~{ m s}$		213 s		227 s	
$243 \mathrm{~w}$	$255~\mathrm{ms}$	$246 \mathrm{m}$		$242 \mathrm{m}$		
$300 \mathrm{s}$	$299 \mathrm{m}$	$287 \mathrm{m}$	$286 \mathrm{w}$	300 m		δ Skelett; s. Text
$316~{ m m}$		$323~{ m m}$	$325~{ m w}$			
		$337 \mathrm{s}$		351 s	355 wp	
				$514 \mathrm{w}$	$506 \mathrm{sp}^{1}$	v _s SiNSi
		590 s	590 vsp	$\sim 650 \text{ vwsh}$	644 vsp	v_{s} (N)SiC ₃
609 w	606 vs		605 vsp	$622 \mathrm{~m}$	$604 \mathrm{mp}$	v_{s} (O)SiC ₃
692 w	691 s	694 m	698 m	687 s	682 m	vas SiC3
		631 s				v SiN
$723~{ m m}$	723 vw		$715~{ m sh}$	$713 \mathrm{m}$		v SiO
759 s	$761~{ m m}$	750 s	768 w	$768 \ { m sb}$	751 wb	$\rho_s \operatorname{SiCH}_3$
		787 vw				YNH?
847 vs	$845~{ m msh}$	849 vvs	849 m	849 vsb	840 m	
	864 m	866 vs	$878 \mathrm{m}$			$\rho_{as} \operatorname{SiCH}_3 (\gamma \operatorname{NH}_2)$
909 vs	$912 \mathrm{~mp}$	$983~{ m m}$	982 s	974 vs	$971 \mathrm{mp}$	$\nu { m NO} + u_{ m as} { m SiNSi}$
				1085 vw		
$1192 \mathrm{s}$	1192 vw					$ ho m NH_2$
1253 vs	$1258 \mathrm{w}$	1255 vs	1260 w	1263 vs	$1247 \mathrm{m}$	$\delta_s \operatorname{SiCH}_3$
					1259 w	
1301 vw		1300 vw				$v_{s} + v_{as} \operatorname{SiC}_{3}$
1590 m	1598 w	$1345\mathrm{m}$				$\delta \mathrm{NH}_2$, $\delta \mathrm{NH}$
1410 vw	$1415 \mathrm{m}$	$1412 \mathrm{w}$	1410 m	1410 w	1409 s	le sich.
1445 vw		1445 vw		1440 w		Joas SICH3
2909 w	2894 vs	2910 m	2905 vs	2910 w	2907 vs	v_s SiCH ₃
2964 s	2959 vs	2966 s	2964 vs	$2965 \mathrm{s}$	2963 vs	v_{as} SiCH ₃
$3255 \mathrm{w}$	$3265 \mathrm{m}$	3306 w	$3306 \mathrm{m}$			$ m v NH$, $ m NH_2$
3326 m	$3335 \mathrm{w}$					

Tabelle 2. Infrarot- und Raman-Spektren von O-Trimethylsilylhydroxylamin, O,N-Bis(trimethylsilyl)-hydroxylamin und O,N,N-Tris(trimethylsilyl)-hydroxylamin

 ν CN, NO gerechnet werden, wie sie analog auch im CH₃ONH₂ auftritt (s. u.). Insgesamt sind die Spektren des CH₃NHOH durch dessen Assoziation unübersichtlicher als jene des isomeren CH₃ONH₂; s. a. Abb. 1.

Über das IR-Spektrum des O,N-Dimethylhydroxylamins (6) in flüssigem und gasförmigem Zustand berichten *Davies* und *Spiers*⁸. Wir haben beide Spektren erneut aufgenommen und können die Literaturangaben in vollem Umfang bestätigen; maximale Abweichungen der Bandenpositionen betragen ± 5 cm⁻¹. Darüber hinaus haben wir das Raman-Spektrum von 6 registriert. Zusammen mit dem IR-Spektrum der Flüssigkeit wird es von Tab. 3 wiedergegeben.

Tabelle sily1)-]	3. Infrarot hydroxylaı)- und Rar min, O,N-D	nan-Spektr)imethylhy(en von O- droxylami	Methylhyd in und O,N	roxylamin, Dimethyl-t	O-Methyl-N rimethylsil	,N-bis(trimethyl- yl-hydroxylamin
CH ₃ ON IR fl. ⁸	H ₂ (4) Raman	CH ₃ ON[Si IR fl.	(CH ₈) ₈] ₂ (5) Raman	CH ₃ NH IR fl. ⁸	OCH3 (6) Raman	CH ₃ N[Si(CF IR fl.	I ₃) ₃]OCH ₃ (7) Raman	Zuordnung
		166 w	109 vw 170 s 194 vs				129 w	Zuordnung für 5 s. Text; für 7:
		~ 776	217 s			226 w	$215 \mathrm{sb}$	$ \overset{\delta}{\circ} \overset{\mathrm{Skelett}}{}_{\mathrm{S}^{-}} + \overset{\rho}{}_{\mathrm{S}^{-}} \overset{\mathrm{SiC}_{8}}{}_{\mathrm{S}^{-}} $
		244 S	285 vwp			243 W 288 m	282 w	õas SIC3 de SiCa + d SiC3
		304 s	•			314 s	309 w	+ 8 Skelett
450 m	460 w	339 VS	332 vw 396 vsp	475	466 mp	388 s	384 mp	
			1		4	466 m	$457 \mathrm{sp}$	S CUN, S CNU
		559 m	$551 \mathrm{sp}$				K	vs SiNSi
		620 m	1			(626 vw)		v _s SiC ₃
		699 m 600 s	645 vsp 609 5			595 W 609	602 vsp	250 ::
		2	2			670 s	667 m	vas DIC3 v SiN
		760 s	$749 \mathrm{m}$			752 s	752 w	o. SiCH.
		825 s	826 s			848 vs		
		847 vvs				882 vs	877 m	pas SICH3
846 s	845 vsp	881 s	878 w	799 ms	798 vsp		834 s	~~~
1012 ms	1016 w	$1035~{ m m}$	1027 w	$1019\mathrm{m}$	1014 w	1036 s	1037 w	v Kette
				1057 vs	$1057 \mathrm{m}$	$1053 \mathrm{~m}$	1056 vw	
				928 s	940 vwb			8 NH?
		981 vs						vas SiNSi

772

$\frac{vw}{vw}$ 1154 $\frac{vw}{vw}$ $\frac{1154}{2}$	vw 1184 vw J. NrH.	1212 m j ^p MO113	MA	ρ NH ₂ , δ NH		1252 vs 1253 wp $\delta_s \operatorname{SiCH}_3$	1412 vw 1420 s $\delta_{as} \operatorname{SiCH}_{s}$	s $1439 \text{ m} 1437 \text{ s} \delta_s \text{ CH}_3$	8as CH3	m 1470 m 1470 m	$8 \mathrm{NH}_{2}$	wp 2774 w)	sp 2794 w 2802 w	2816 m	2871 m $2856 m$	vsp 2888 m 2900 vs $\sqrt{^{\text{VCH}}}$	vsp 2908 m	vs 2955 s 2959 vs	s 2964 vs		sbp		HN		
1133 1150 1	1216		1190 1					1439 s		1470 r		2775 v	2806 s			2890 v	2935 v	2947 1	2979 s		$\sim 3260~{ m s}$				
1133 w 1153 w	$1219~{ m m}$		1184 m					1441 m	1460 m	$1476 \mathrm{sh}$	1592 ?	$2775~{ m m}$	2809 s		$2860 \mathrm{sh}$	2886 m	$2939 \mathrm{s}$		2977 ms		$3234 \mathrm{m}$				
1147 vw 1174 vwp	4					1247 w	$1404 \mathrm{~s}$	$1425 \mathrm{~sh}$	1461 w				2802 w			2897 vs		2955 vs							
1184 vw						1255 vs	1410 w	1427 w	1450 w				2811 vw			2906 m		2962 s							
1172 wp	(1218 vw				1440 m	1467 w		1605 vw		2812 vsp			2894 vsp	2940 vsp		2983 vs	3151 s	3235 vsp		3311 vsp		
1168 ms				1212 m	1316 ms			1438 s	1464 s		1593 s		2811 vs			2895 vs	2935 vs		2979 s	3157 s	3240 s	$3294 \mathrm{sh}$	3308 vs	$3377 \mathrm{sh}$	$3539 \mathrm{sh}$

H. 2/1969]

(C ₂ H	(5)2NOH	$(C_2H_5)_2$	NOSi(CH ₃) ₃	7
IR fl.	Raman	IR fl.	Raman	Zuoranung
		~~~ <u>~</u> ~~~~ <u>~</u> ~~~~ <u>~</u> ~~~~~~~~~~~~~~~~~~	194 s	ρ SiC3
			$242 \mathrm{~w}$	$\delta_{as} \operatorname{SiC}_3$
		331 w		$\delta_s SiC_3$
340 s	$344 \mathrm{w}$			)
$437 \mathrm{~s}$	$432 \mathrm{s}$	$435~{ m mb}$	$435~{ m mp}$	
487 s	$485 \mathrm{s}$	<b>467</b> s	$455~{ m mp}$	8 77
$509 \mathrm{~s}$	519 vw		_	o Kette
		$551~{ m m}$		
$600 \mathrm{w}$	600  vw	$570 \mathrm{w}$	$572~{ m sp}$	
		615 s	618 vsp	) are
		682 s	$686 \mathrm{m}^2$	V SIC3
			720  vw	ν SiO
		$750 \mathrm{~s}$		$\rho_{s}$ SiCH ₃
$759 \mathrm{~s}$	770  vsp	760 s	760 w	v Kette
	1	781 vw		
		793  vw	788  vw	
828  vw	$832 \mathrm{mp}$		$825 \mathrm{w}$	v Kette
		840 vs	840 w	) areas
		880 vs	880 w	$\rho_{as}$ SiCH ₃
910 s	921 vs	936 vs	<b>932</b> m	í.
1046 s	1056 vsp	$1050 \mathrm{m}$	1040  mp	1
1070 w	1072 vw	1071 m	1075  vw	
1130 m		1130 m	1	Kette, 8 HCH
1152 vw	1145 sp	1155 vw	1120-	
1170 m	1162 m	1177 w	1170 vwb	
11,0 11	1102 111	1246 vs	,	)
		1256 m		δ. SiCH3
		1295 w		615 + 682
1260 vw	1276 s	1200 11	1270 vw	)
1333 w	12103	1337 w		A HCH
1366 m	1385 vw	1372 s		}*
1000 111	1000 11	10.2.5	1412 m	δes SiCH3
1448 m	1450 vs	1448 m	1450 vs	
1462 m	1100 15	1466 m	100 10	8 HCH
2846 m	2810 s	2845 m		$\left\{ \right.$
2878 m	2880 vsn	2878 m	2882 s	
	-000 vsp	2070 111	2900 vsp	CH SiCH
2942 m	2942 vsp	2940 ssh	2942 vsp	(, , , , , , , , , , , , , , , , , , ,
2978 s	2974 s	2975  vs	2970 vs	$SiCH_3$

Tabelle 4. Infrarot- und Raman-Spektren von N,N-Diäthylhydroxylamin und N,N-Diäthyl-O-trimethylsilyl-hydroxylamin

Dagegen erscheint uns das IR-Spektrum des  $(C_2H_5)_2$ NOH aus der Literatur¹¹ überarbeitungsbedürftig, so daß wir diese Substanz erneut IR- und Raman-spektroskopisch untersucht und die Spektren in Tab. 4

¹¹ F. Mathis, R. Mathis-Noël, A. Chauveau und A. Munoz, Ann. Fac. Sci. Univ. Toulouse, Sci. math. Sci. physiques [4] 25, 111 (1963).

zusammengefaßt haben. Hierzu muß bemerkt werden, daß es im Rahmen der vorliegenden Arbeit nicht beabsichtigt ist, das Spektrum von 8 in seinen Einzelheiten zu interpretieren, sondern es nur zum Vergleich mit den Spektren von 9 zu verwerten.

## Trimethyl silyl hydroxylamine

Das IR-Spektrum des  $(CH_3)_3SiONH_2$  im NaCl-Bereich wurde bereits zu einem früheren Zeitpunkt im Zusammenhang mit Strukturüberlegungen aufgenommen³ (s. a. Abb. 2); es ist mit unseren neueren Messungen



Abb. 2. IR-Spektrum des H₂NOSi(CH₃)₃

identisch. IR- und Raman-Spektrum des  $(CH_3)_3SiON[Si(CH_3)_3]_2$  wurden gleichzeitig und unabhängig von dieser Arbeit von *Witke*, *Reich* und *Kriegsmann*¹² untersucht. Während die Spektren selbst mit unseren nahezu identisch sind, kommen wir auf Grund der *NCA* (s. u.) zu einer teilweise anderen Zuordnung.

Für die Trimethylsilylhydroxylamine 1, 2 und 3 lassen sich folgende Strukturvorschläge machen:

$(CH_3)_3SiONH_2$	1a	(CH ₃ ) ₃ SiNHOSi(CH ₃ ) ₃	2a
(CH ₃ ) ₃ SiNHOH	1b	[(CH ₃ ) ₃ Si] ₂ NOH	2b
$(CH_3)_3SiNH_2O$	1 c	[(CH ₃ ) ₃ Si] ₂ NHO	2c
[(CI	$H_3)_3S$	$i_{2}NOSi(CH_{3})_{3}$ 3a	
[(CH	$I_{3})_{3}S_{3}$	i] ₃ NO <b>3b</b>	

Auf Grund der ¹H-KMR-Spektren konnten die Strukturen 2b, 2c und 3b weitgehend ausgeschlossen werden¹. Im Falle des Trimethylsilylhydroxylamins spricht das ¹H-KMR-Spektrum gegen 1b, da nur ein

¹² K. Witke, P. Reich und H. Kriegsmann, J. Organomet. Chem. 15, 37 (1968); persönliche Mitteilung.

breites NH-Signal bei — 5 ppm gefunden wurde³. Dies steht nur mit den Strukturvorschlägen 1a und 1c im Einklang.

Das Schwingungsspektrum von 1 gibt bereits aus der Lage der NH(OH)-Valenz- und Deformationsschwingungen sichere Argumente gegen Struktur 1b an die Hand. Nimmt man an, daß die SiNHOH-Gruppe mit einer SiNHN-^{13, 14} und SiNHCH₃-Gruppe¹⁵ vergleichbar ist, dann erwartet man zwei unabhängige NH- und OH-Valenzschwingungen, die wohl kaum zufällig die für freie SiNH₂-Gruppen üblichen Intensitätsverhältnisse im IR- und Raman-Effekt und gleichzeitig mit  $\Delta \nu = 70 \text{ cm}^{-1}$  die gleiche Separation von  $\nu_{as}$ NH₂ und  $\nu_{s}$ NH₂ zeigen dürften, wie sie sowohl im (C₂H₅)₃SiNH₂ (73 cm⁻¹)¹⁶ als auch im [(CH₃)₃Si]₂NNH₂ (77 cm⁻¹)¹³ gefunden wurde. Noch gewichtiger spricht  $\delta$  NH₂ bei 1590 cm⁻¹ (IR) gegen Struktur 1b, denn für 1b erwartet man die kurzwelligste  $\delta$  NH wie im (CH₃)₃SiNHCH₃ (1380 cm⁻¹)¹⁵ bzw. (CH₃)₃SiNHN(CH₃)₂ (1365 cm⁻¹)¹⁴ um 1370 cm⁻¹, ebenso  $\delta$  OH wie im NH₂OH (1357 cm⁻¹) bzw. (C₂H₅)₂NOH (< 1470 cm⁻¹; s. u.), jedoch keinesfalls bei 1590 cm⁻¹.

Gegen eine Formulierung als  $(CH_3)_3SiNH_2O$  (1 c), wie sie von Wannagat und Pump³ als wahrscheinlichste angenommen wurde, lassen sich neben anderen Befunden^{1, 2} und dem Argument, daß Silylammoniumsalze in der Regel nicht beständig sind, auch aus den Spektren Hinweise entnehmen. In 1c ist die Deformation des HNH-Winkels gleichzeitig mit einer Beanspruchung des SiNH-Winkels verknüpft, und für eine solche Schwingung erwartet man ein deutliches Absinken von  $\delta$  NH₂ unter den an C₂NH₂⁺-Systemen¹⁷ gefundenen Wert von etwa 1600 cm⁻¹, wie es auch im CH₃NHSi(CH₃)₃ (1380 cm⁻¹)¹⁵, verglichen mit dem CH₃NHCH₃ (1458/1441 cm⁻¹)¹⁸, beobachtet wird.

Die Zuordnung der Schwingungsspektren von 2 bzw. 3 erfolgt in Analogie zu 1 bzw. auf Grund der NCA. Besonders erschwerend ist die Tatsache, daß sich außer einer starken Bande bei 900—1000 cm⁻¹ ( $\nu$  NO) in 1, 2 und 3 alle beobachteten Banden (mit Ausnahme von 506 cm⁻¹ in 3) notfalls auf innere Schwingungen der SiC₃-Gruppe⁴ zurückführen lassen, denn auch ~ 720 cm⁻¹ kann als  $\nu_s$ 'SiC₃ (aus  $\nu_e$  durch Aufhebung der Entartung herrührend) interpretiert werden.

Die Lage der symmetrischen (O)SiC₃-Valenzschwingung ist in 1, 2 und 3 außergewöhnlich niedrig:  $605 \pm 5$  cm⁻¹. Diese niedrige Lage ist ein sicheres Zeichen für eine eng benachbarte v SiO bei höheren Wellenzahlen.

¹³ U. Wannagat, F. Höfler und H. Bürger, Mh. Chem. 96, 2038 (1965).

¹⁴ H. Bürger und F. Höfler, Mh. Chem. 97, 984 (1966).

¹⁵ H. Bürger und U. Goetze, Mh. Chem. 99, 155 (1968).

¹⁶ H. Bürger, Inorg. Nucl. Chem. Letters 1, 11 (1965).

¹⁷ J. Bellanato, Spectrochim. Acta 16, 1344 (1960); E. A. V. Ebsworth und N. Sheppard, Spectrochim. Acta 13, 261 (1959).

¹⁸ G. Dellepiane und G. Zerbi, J. Chem. Physics 48, 3573 (1968).

Das gleiche gilt in noch verstärktem Maße für  $v_{s}(N)$ SiC₃ in 2 bei 590 cm⁻¹,

während in 3 umgekehrt  $\nu_8$ SiNSi bei 506 cm⁻¹  $\nu_8$ (N)SiC₃ auf 644 cm⁻¹ anhebt. Damit verdichtet sich die Wahrscheinlichkeit, daß  $\nu$  SiO bei  $\sim$  720 cm⁻¹ liegt und  $\nu$  SiN in 2 bei 631 cm⁻¹, eventuell auch bei 787 cm⁻¹.

Für v NO kommen in 1 und 2 nur 909 bzw. 983 cm⁻¹ (IR) in Frage. Bei 3 erwartet man bei gleichbleibenden Bindungsverhältnissen auf Grund der Beeinflussung durch v SiO und v SiN einen Wert wie bei 2 oder geringfügig niedriger.

Die sehr starke IR-Bande bei 974 cm⁻¹ mit der mittelstarken, polarisierten Raman-Linie bei 971 cm⁻¹ läßt sich weder allein als  $v_{as}$ SiNSi deuten (Ra p!) noch als v NO (IR-Intensität!) interpretieren. Nicht zuletzt auf Grund der *NCA* halten wir diese Frequenz für  $v_{as}$ SiNSi und v NO in zufälliger Entartung.

Auch weisen Untersuchungen an massenähnlichen Systemen nach, daß die Annahme einer zufälligen Entartung sinnvoll ist.

[(CH ₃ ) ₃ Si] ₂ N—X	vas SiNSi	$v_{\rm s}~{ m SiNSi}$	v NX	Lit.
$\mathrm{X}=\mathrm{CH}_3$	906 (IR)	505 (Ra)	1065 (IR)	19
$\mathbf{NH}_2$	1005 (IR)	490 (Ra)	1060 (IR)	13
NHCH ₃	983 (IR)	515 (Ra)	1084/952 (IR)	20
$N(CH_3)_2$	970 (IR)	511 (Ra)	1026 (Ra)	14
${\mathop{\rm OCH}}_3$ ${\mathop{\rm OSi}}({\mathop{\rm CH}}_3)_3$	981 (IR) 974 (IR)	551 (Ra) 506 (Ra)	1035/884 (IR) 971 (Ra; IR)	diese Arbeit diese Arbeit

Dieser Zuordnungsvorschlag steht allerdings im Gegensatz zu jenem von Kriegsmann et al.  12 . Wir konnten im IR-Spektrum von 3 bei 1057 cm⁻¹ keine Bande auffinden.

## Trimethylsilyl-alkylhydroxylamine

Die Spektren der Trimethylsilyl-alkylhydroxylamine 5, 7 und 9 lassen sich auf Grund der Erfahrungen bei den Trimethylsilylhydroxylaminen selbst sowie über die NCA (5) zuordnen. Tab. 3 gibt die Schwingungsspektren von 5 und 7 einschließlich der zugehörigen Alkylhydroxylamine 4 und 6 wieder.

Für das  $CH_3ON[Si(CH_3)_3]_2$  findet sich in der Literatur ein IR-Spektrum im NaCl-Bereich²¹. Dieses technisch sehr unbefriedigende Spektrum stammt aber zweifellos von  $[(CH_3)_3Si]_2NH$  (IR 1180, 935, 880 stark; 981/1035 fehlen!). Ob dieses Spektrum auf Hydrolyse beim Präparieren oder eine Verwechslung zurückzuführen ist, läßt sich nicht entscheiden.

¹⁹ J. Goubeau und J. Jiménez-Barberá, Z. anorg. allgem. Chem. 303, 217 (1960).

²⁰ F. Höfler und U. Wannagat, Mh. Chem. 97, 1598 (1966).

²¹ A. Favre, Dissertat. Univ. Bordeaux 1965; Sci. Commun. Internat. Sympos. Organosilicon Chem.; Prag 1965, S. 340. IR- und Raman-Spektrum von 5 werden von den Abb. 3 und 4 wiedergegeben.



Abb. 3. Raman-Spektrum des CH₃ON[Si(CH₃)₃]₂



Abb. 4. IR-Spektrum des CH₃ON[Si(CH₃)₃]₂

Die Zuordnung der SiN-Valenzschwingungen in 5 und 7 ist weitgehend sicher, zumal die tiefe Lage von  $v_s$  SiC₃ in 7 auf eine eng benachbarte v SiN bei kürzeren Wellenlängen hinweist. Die CON- bzw. CONC-Kette gibt zu zwei bzw. drei Kettenfrequenzen Anlaß, die experimentell auch gefunden wurden. Silylsubstitution verschiebt diese Schwingungen, deren Charaktere für 6 und 8 nicht exakt festzulegen sind, in die von der Lage der SiN-Valenzschwingung her erwartete Richtung. Die Zuordnung der HCH- und HCX-Deformationsschwingungen schließt sich für 6 und 8 an die NCA von 4 und 5 an (s. u.).

Ebenso wie bei 1 und 3 weist die NCA für 5 eine starke Mischung aller unterhalb 500 cm⁻¹ gelegenen Deformationsschwingungen nach. Deshalb wird an dieser Stelle auf eine Besprechung dieser energiearmen Schwingungen verzichtet.

## Normalkoordinatenanalyse

#### Hydroxylamin

Nur für H₂NOH bzw. D₂NOD liegen bisher Kraftkonstantenrechnungen vor. *Giguère* und *Liu⁶* erhielten mit einer vereinfachten Potentialfunktion (nur Diagonalelemente der F-Matrix) teilweise andere Werte als *Rao* et al.²², die mit einem allgemeinen Valenzkraftfeld und der Zuordnung nach⁵ (allerdings für H₂NOH und D₂NOD verschiedene) Kraftkonstanten berechneten. Die Diagonalkraftkonstanten sind zusammen mit den eigenen Ergebnissen für folgende vier A'-Schwingungen

$S_1$	νNO	Zuordnung ⁶	895	diese Arbeit	$895~\mathrm{cm}^{-1}$
$S_2$	$\delta \mathrm{NH}_2$		1605		1605
$S_3$	$\gamma  \mathrm{NH}_2$		1115		765
$\mathbf{S}_4$	$\delta \operatorname{NOH}$		1357		1357

in Tab. 5 zusammengestellt.

Tabelle 5. Normierte Diagonal-Symmetriekraftkonstanten des  $H_2$ NOH [mdyn/Å]

Lit.	6	22	diese Arbeit
	3,89	3,9273	3,8
$\mathbf{F}_{22}$	1,14	0,2985	0,59
$\mathbf{F}_{33}$	0,73	0,6008	0,49
$\mathbf{F}_{44}$	0,95	0,5524	0,59

Die Unterschiede in  $F_{22}$  und  $F_{44}$  beruhen hauptsächlich auf der verschiedenen Zuordnung, aber auch auf unterschiedlichen Aggregatzuständen bei den Messungen. Da alle von uns untersuchten Moleküle von H-Brücken weitgehend frei sind, d. h., unassoziiert vorliegen, halten wir die Gasphase-Daten am H₂NOH⁶ für die sinnvolleren Bezugsgrößen. Ebenso erscheint uns bis auf v₃ die Zuordnung von *Giguère* und *Liu* auf Grund unserer Rechnungen als die zutreffendere, wenngleich besonders deren Werte für F₂₂ und F₄₄ wesentlich zu hoch erscheinen [s. Vergleichswerte analoger Moleküle bei^{18, 23} (dort sind Deformationskonstanten normiert!)].

²² P. Babu Rao und K. Sreeramamurthy, Current Sci. [Bangalore] **31**, 372 (1962).

²³ H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorg. Chemie, Berlin 1966.

Monatshefte für Chemie, 100/2

Unser Zuordnungsvorschlag stützt sich insbesondere auf die Normalkoordinatenanalyse. Überträgt man das Potentialfeld der Methylamine¹⁸ unter sinnvoller Erweiterung auf das NH₂OH, so lassen sich die beobachteten Frequenzen bereits ohne Anpassung angenähert wiedergeben; eine andere Zuordnung ist weitgehend auszuschließen.

Um eine Basis für die NCA der übrigen Moleküle zu haben, wurde das von den Methylaminen übertragene Kraftfeld unter Berücksichtigung der vom Potentialenergieverteilungsprinzip vorgegebenen Restriktionen den beobachteten Frequenzen auf < 1% angepaßt, indem Haupt- und Nebendiagonalglieder innerhalb enger Grenzen sinnvoll variiert wurden.

Im einzelnen wurde bei der NCA des  $NH_2OH$ , ausgehend von  $C_s$ -Symmetrie, unter Vernachlässigung der NH- und OH-Valenzschwingungen²⁴ für die Rasse A' mit den Symmetriekoordinaten

$$S_1 = s; S_2 = \alpha; S_3 = 1/\sqrt{2} (\beta_1 + \beta_2); S_4 = \gamma$$

unter Annahme von Tetraederwinkeln für  $\alpha$  (/HNH),  $\beta$  (/HNO) und  $\gamma$  (/NOH) am *trans*-konfigurierten Molekül und den Abständen

$$s = d NO = 1,48; r = d NH = 1,03; t = d OH = 0,97 Å$$

nach der Wilsonschen FG-Matrix-Methode vorgegangen²⁵. Folgender, *nicht* abstandsnormierter Kraftkonstantensatz gibt die beobachteten Frequenzen mit den in Klammern angegebenen Fehlern wieder.

$S_1$	3,8	-0,2	0,24	0,36	$\nu_{\rm gef.}^{6}$	$895 \ cm^{-1}$	Vbergef.	0,7
$S_2$		0,624	-0,05	0,01	-	1605	-	2,9
$S_3$			0,52	0,05		765		5,9
$S_4$				0,9		1357		3,3

		895	1605	765	1357	
<u></u>	S ₁	101	0	6	0	
	$\mathbf{S}_{2}$	0	<b>79</b>	<b>22</b>	0	
	$\mathbf{S}_{3}^{-}$	12	16	<b>74</b>	1	
	$\mathbf{S_4}$	1	0	4	99	

Die Potentialenergieverteilung

spricht für eine Mischung von  $S_2$  mit  $S_3$ , während  $\lor$  NO und  $\delta$  NOH weitgehend charakteristisch sind.

 $^{^{24}}$  Die Vernachlässigung der NH- und OH-Valenzschwingungen wurde der Abspaltung nach *Wilson* vorgezogen. Wegen der starken H-Brücken sind NH- und OH-Valenzkraftkonstanten des NH₂OH nicht übertragbar.

²⁵ E. B. Wilson, jr., J. C. Decius und P. C. Cross, Molec. Vibrations, New York 1955.

H. 2/1969]

# O-Methylhydroxylamin (4)

Für das  $CH_3ONH_2$  wurde das Säkularproblem des  $NH_2OH$  in der Rasse A' wie folgt erweitert:

$S_1$	s	νNO
$S_2$	x	$\delta\rm NH_2$
$S_3$	$1/\sqrt{2}(\beta_1 + \beta_2)$	$\gamma\rm NH_2$
$S_4$	Υ	$\delta  \mathrm{NOC}$
$S_5$	$\mathbf{t}$	νCO
$S_6$	$1/\sqrt{6}(\varepsilon_1+\varepsilon_2+\varepsilon_3-\delta_1-\delta_2-\delta_3)$	$\delta_{s}\operatorname{CH}_{3}$
$S_7$	$1/\sqrt{6}(2 \delta_1 - \delta_2 - \delta_3)$	$\rho \operatorname{CH}_3$
$S_8$	$1/\sqrt{6}(2 \varepsilon_1 - \varepsilon_2 - \varepsilon_3)$	$\delta_{as} \operatorname{CH}_3$

 $\gamma$  (/NOC),  $\varepsilon$  (/HCH) und  $\delta$  (/HCO) wurden zu 109°28',  $\alpha$ ,  $\beta$ , s und r wie beim NH₂OH, die übrigen Abstände wie folgt angenommen:

t = d OC = 1,427; u = d CH = 1,09 Å.

Unter Übertragung und geringfügiger Anpassung der Kraftkonstanten des NH₂OH, des CH₃OCH₃²⁶, von CH₃X-Verbindungen²⁷ sowie nach²⁸ und¹⁸ gibt folgender, nicht abstandsnormierter Kraftkonstantensatz die beobachteten Frequenzen des CH₃ONH₂ einschließlich des vorwiegenden Charakters wieder:

$F_{11}$	3,85	$F_{14}$	0,35	$F_{55}$ 5,0	F77 0,89
$F_{12}$	0,2	$F_{34}$	0,1	$F_{36} = -0.05$	$F_{48} - 0,2$
$\mathbf{F}_{22}$	0,645	$\mathbf{F_{44}}$	1,35	$F_{56} - 0,1$	$F_{78} = 0.05$
$\mathbf{F_{13}}$	0,25	$\mathbf{F_{15}}$	0,55	$F_{66}$ 0,56	F ₈₈ 0,49
$F_{23}$	0,06	$\mathbf{F}_{35}$	0,04	$F_{17} - 0.04$	
$\mathbf{F}_{33}$	0,53	$F_{45}$	0,2	$F_{47} - 0,1$	
	Alle anderen	$\mathbf{F}_{ij}=0.$			

v gef.	v ber.	vorwiege	ender Charal	kter ³⁵	
 845	829	S ₁ (62),	S ₃ (20),	$S_2(9)$	
1605	1603	S ₂ (80),	$S_3(13)$		
n. b.	884	S ₃ (55),	$S_1$ (29),	$S_4(9)$	
460	453	S ₄ (96),	$S_3(11),$	$S_{8}(8)$	
1016	1017	S ₅ (77),	$S_6(11),$	$S_1(6)$	$S_{3}(5)$
1440	1443	S ₆ (73),	$S_5(16),$	$S_8(10)$	
1172	1174	S ₇ (65),	S ₈ (25),	$S_9(10)$	
1467	1467	S ₈ (60),	S ₇ (21),	$S_{6}(11)$	

²⁶ J. M. Freeman und T. Henshall, J. Mol. Structure 1, 31 (1967/68).
 ²⁷ J. Aldous und I. M. Mills, Spectrochim. Acta 18, 1073 (1962); 19, 1567 (1963).

²⁸ H. J. Becher, Fortschr. chem. Forsch. 10, 156 (1968).

Da eine der beiden Frequenzen  $v_1$  und  $v_3$  nicht beobachtet wurde und  $v_1$ und  $v_3$  möglicherweise nahe beieinander liegen, wurde dieses Frequenzpaar nicht weiter angepaßt; die Potentialenergieverteilung von  $v_1$  und  $v_3$  auf  $S_1$ und  $S_3$  ist deshalb ein wenig willkürlich.

#### Trimethylsilylhydroxylamin

Analog zu 4 wurde für das Molekül H₂NOSi $C_3$  ( $C = CH_3$ -Masse) eine NCA durchgeführt. Hierbei stand einerseits die Absicht im Vordergrund, die Zuordnung aus Tab. 8 zu sichern, insbesondere die Frage nach  $\vee$  SiO zu klären, und andererseits erhofften wir Informationen über die Elektronenverteilung in der NOSi-Brücke zu erhalten.

Es wurden die gleichen Symmetriekoordinaten wie beim  $CH_3ONH_2$ , zusätzlich jedoch  $\nu_s$  und  $\nu_{as}$  SiC₃, verwendet.

$S_1$	s	νNO
$S_2$	α	$\delta\mathrm{NH}_2$
$S_3$	$1/\sqrt{2}(\beta_1 + \beta_2)$	$\gamma\rm NH_2$
$S_4$	γ	δNOSi
$S_5$	t	v SiO
$S_6$	$1/\sqrt[]{3}(\mathbf{u_1}+\mathbf{u_2}+\mathbf{u_3})$	$\nu_{s}{ m Si}C_{3}$
$S_7$	$1/\sqrt{6}(\varepsilon_1+\varepsilon_2+\varepsilon_3-\delta_1-\delta_2-\delta_3)$	$\delta_{\mathbf{s}}\operatorname{Si}\!C_{3}$
$\mathbf{S_8}$	$1/\sqrt{6}(2u_1 - u_2 - u_3)$	$\nu_{\rm as}{\rm Si}C_{3}$
$S_9$	$1/\sqrt{6}(2\delta_1 - \delta_2 - \delta_3)$	$\operatorname{\rho}{\rm Si}C_{3}$
$S_{10}$	$1/\sqrt[]{6}(2\varepsilon_1-\varepsilon_2-\varepsilon_3)$	$\delta_{as} \operatorname{Si} C_{3}$

Bis auf  $\gamma$  (/NOSi) = 120°²⁹ wurden alle Winkel zu 109°28', t und u zu

$$t = d SiO = 1,64; u = d SiC = 1,9 Å$$

angenommen.

Die Kraftkonstanten wurden einerseits vom  $H_2NOH$  übertragen, andererseits die inneren Si $C_3$ -Kraftkonstanten von anderen Trimethylsilyl-Verbindungen⁴, besonders dem [(CH₃)₃Si]₂O übernommen.

Bis auf SiO und folglich die Zuordnung von  $\nu$  SiO stehen die Ergebnisse der NCA mit der direkten Interpretation der Spektren auf Grund von Gruppenfrequenzen und spektralem Übergang im Einklang.

²⁹ Diese Annahme ist für <u>/SiON</u> unsicher, aber sinnvoll, da in SiOZ-Verbindungen der Winkel am O-Atom gewöhnlich aufgeweitet ist [s. z. B. *H. Bürger*, Fortschr. chem. Forsch. 9, 1 (1967)]. Jede andere Annahme über <u>/SiON</u> ist jedoch mit der gleichen Unsicherheit wie 120° behaftet. Nimmt man für <u>/SiON</u> 109°28′ an, so erhält man mit dem gleichen Kraftkonstantensatz folgende Frequenzwerte: v NO 919 cm¹ und v SiO 735 cm⁻¹.

Je nach Wahl von f SiO läßt sich v SiO zwischen etwa 820 und 723 cm⁻¹ errechnen, wenn man entweder f SiO vom Hexamethyldisiloxan (4,27 mdyn/Å³⁰) übernimmt (4,3) oder zu 3,3, d. h. knapp dem Einfachbindungswert nach *Gordy* (3,48 mdyn/Å³¹), festlegt. Alle Zwischenwerte sind nicht sinnvoll, da sie mit keiner der beobachteten Frequenzen in Einklang zu bringen sind.

Ein Wert von etwa 850 cm⁻¹ für v SiO in **1** ließe sich auch über das Raman-Spektrum stützen, denn zwischen 600 und 1000 cm⁻¹ sind allein die Linien bei 606, 864 und 912 cm⁻¹ polarisiert. Geht man davon aus, daß  $\rho_{as}$  CH₃ bei (CH₃)₃SiOZ-Verbindungen ( $Z \neq$  Si) gewöhnlich nur zu einer schwachen, depolarisierten Raman-Linie Anlaß gibt [s.⁴; (CH₃)₃SiOCH₃^{32, 33}], so ließe sich die polarisierte Linie bei 864 cm⁻¹ v SiO zuschreiben.

Dennoch erscheint, nicht zuletzt wegen der Nachbarschaft mit v NO, der bei größeren SiON-Winkeln berechneten kleineren Frequenzen für v SiO sowie der Ähnlichkeit des Spektrums mit jenem von  $(CH_3)_3SiOCH_3^{32,33}$ eine Zuordnung von 864 zu v SiO weniger sinnvoll als 723 cm⁻¹. Rechnungen zeigen, daß sich v NO und v SiO so stark abstoßen, daß selbst bei Erhöhung der NO/SiO-Wechselwirkungskonstanten über 0,7 mdyn/Å hinaus (was mit der Erfahrung im Widerspruch steht) sowie bei gleichzeitiger Anhebung von f SiO auf 5 mdyn/Å keine Wiedergabe der beobachteten Frequenzen 909 und 864 cm⁻¹ möglich ist. Mit f NO = 3,8, f SiO = 4,5 und f SiO/NO = 0,6 mdyn/Å errechnet man v NO zu 938 und v SiO zu 819 cm⁻¹.

Wegen der verbleibenden Unsicherheit nach dem Ursprung der 723-Bande in 1 kann auch leider zur Klärung der Frage, ob die Entartung von  $v_{as}$  SiC₃ in (CH₃)₃SiOZ-Molekülen aufgehoben ist, wie es teilweise angenommen wird³⁴, kein Beitrag geliefert werden.

Im einzelnen verteilen sich die Frequenzen auf folgende Schwingungscharaktere  $S_k^{35, 36}$ :

³¹ W. Gordy, J. Chem. Physics 14, 305 (1946).

³² R. Forneris und E. Funck, Z. Elektrochem. 62, 1130 (1958).

³³ A. N. Lazarew, K. Poiker und E. V. Kukharskaya, Izvest. Akad. Nauk SSSR, Neorg. Materialy **3**, 2029 (1967).

³⁴ A. Marchand, J. Valade, M. T. Forel, M. L. Josien und R. Calas, J. Chim. Phys. **1962**, 1142.

³⁵ Die Zahlen geben  $V_k = F_{dia} \cdot L_{ik}^2 \cdot 100 / \Sigma F_{ij} \cdot L_{ik} \cdot L_{jk}$  wieder.

³⁶ Die Symmetriekraftkonstanten von 1, 3 und 5 können aus Platzgründen nicht wiedergegeben werden; sie können bei den Autoren angefordert werden.

³⁰ H. Bürger, U. Goetze und W. Sawodny, Spectrochim. Acta **24** A, 2003 (1968).

v gef.		v ber.	vorwiegender Charakter ³⁵			
	909	914	S ₁ (93),	S ₃ (19),	S ₅ (7)	
	1590	1589	$S_2$ (84),	$S_3(13)$	- ( )	
	n. b.	851	S ₃ (68),	$S_2(17),$	$S_1$ (9)	
	316	315	S7 (53),	$S_4(44),$	S ₉ (26)	
	723	724	S ₅ (88),	S ₆ (15),	S ₇ (9)	
	609	609	S ₆ (87),	$S_5(5)$		
	300	297	S ₇ (40),	S ₉ (24),	$S_4$ (23)	
	692	698	$S_8$ (94)			
	212	198	S ₉ (44),	$S_4(27),$	$S_{10}(8)$	
	243	244	S10 (89).	$S_4(5)$		

# Bis(trimethylsilyl)methylhydroxylamin und Tris(trimethylsilyl)hydroxylamin

Eine Kombination der bisherigen Ergebnisse mit der NCA des  $[(CH_3)_3Si]_2NH$  ermöglicht eine Berechnung für die Moleküle  $[(CH_3)_3Si]_2$ . NOCH₃ (5) und  $[(CH_3)_3Si]_2NOSi(CH_3)_3$  (3). Zu diesem Zweck wurde als Ausgangslösung das Potentialfeld von 4 bzw. 1 mit jenem des  $[(CH_3)_3Si]_2NH^{37}$  unter Annahme einer planaren Si₂NO-Einheit mit <u>/SiNSi</u> = 120°, d SiC = 1,88 und d SiN = 1,72 Å kombiniert und zur besseren Anpassung an die auf Grund der Ausgangsrechnung wahrscheinlichste Zuordnung verfeinert.

Im einzelnen wurden die bereits aufgeführten Symmetriekoordinaten von  $H_2NOCH_3$  und  $H_2NOSi(CH_3)_3$  um jene des  $[(CH_3)_3Si]_2NH^{37}$  [s. a.  $(CH_3)_2SO^{38}$ ] der Rasse  $A_1$  erweitert und folgende Schwingungen berechnet:

Symmetrie- koordinate		ν gef.	$\nu$ ber.	vorwiegender Charakter ³⁵				
$\overline{S_1}$	vas SiC3	690	691	S ₁ (96),				
$S_2$	$\delta_{as}$ SiC ₃	<b>244</b>	<b>234</b>	$S_2$ (77),	$S_8$ (14),	$S_3$ (13)		
$S_3$	ρ SiC ₃	339	349	$S_3$ (45),	S ₆ (42),	$S_2$ (8),	$S_{13}(8)$	
$S_4$	$v_s$ SiNSi	551	551	$S_{13}$ (34),	S ₇ (24),	$S_4$ (21)		
$\mathbf{S}_{5}$	νNO	881	884	S ₅ (78),	S ₄ (24),	$S_{11}(6)$		
S	δ SiNSi	109	108	S ₆ (51),	$S_3$ (34)			
$S_7$	$v_s$ SiC ₃	645	643	S ₇ (77),	S ₄ (25),	S ₈ (6)		
S ₈	$\delta_{s}$ SiC ₃	217	218	S ₈ (64),	$S_2$ (15),	S ₃ (7),	$S_4$ (7)	
S ₉	νĈΟ	1035	1031	S ₉ (79),	S ₁₀ (9),	$S_5$ (8)		
$S_{10}$	$v_{s} OCH_{3}$	1427	1422	S ₁₀ (83),	S ₉ (15),	$S_{11}(7)$		
$S_{11}$	$ ho OCH_3$	1174	1174	$S_{11}$ (66),	$S_{12}$ (25),	$S_5$ (9)		
$S_{12}^{}$	$\delta_{as} OCH_3$	1450	1450	$S_{12}$ (63),	$S_{11}(23),$	$S_{10}(8)$		
$S_{13}$	8 NOC	396	411	$S_{13}(60),$	S ₄ (30),	S ₈ (16)		

$$[(CH_3)_3Si]_2NOCH_3$$
 (5)

³⁷ H. Bürger, F. Höfler und W. Sawodny, in Vorbereitung.

³⁸ W. D. Horrocks, jr., und F. A. Cotton, Spectrochim. Acta 17, 134 (1961).

Symmetrie-

koordinate

S₁ v_{as} (N)SiC₃

 $S_2 \delta_{as}$  (N)SiC₃

 $S_3 \rho (N)SiC_3$ 

S₄ v SiNSi

S₆ § SiNSi

S7 vs (N)SiC3

 $S_8 \delta_s (N) SiC_3$ 

 $S_{10} v_s (O) SiC_3$ 

 $S_{11} \delta_s (O) SiC_3$ 

 $S_{12} v_{as} (O) SiC_3$ 

 $S_{14} \delta_{as} (O) SiC_3$ 

 $S_{13} \rho$  (O)SiC₃

S₁₅ & NOSi

 $S_5 \nu NO$ 

S₉ v SiO

S₃ (39),

S₄ (54),

S₅ (92),

S₆ (52),

S₇ (83),

S₈ (29),

S₉ (77),

S₁₀ (80),

S11 (62),

 $S_{12}$  (81),

S₁₃ (38),

S14 (68),

S₁₃ (22),

vorwi	egender Cha	rakter ³⁵	
$S_1$ (93) $S_2$ (80).	Sa (19).	S ₆ (7).	S15 (6)

 $S_6$  (7),

S15 (11),

S15 (10),

 $S_{9}$  (8)

S10 (11)

S15 (19),

S₁₂ (12),

 $S_7$  (6)

S₄ (7),

 $S_{13}(8)$ 

 $S_{15}(19),$ 

S₃ (19),

S₆ (38),

 $S_7$  (12),

S₄ (15),

 $S_3$  (34)

S₄ (20),

S11 (22),

 $S_{10}$  (12),

S₉ (6),

S15 (27)

S₉ (9),

 $S_8$  (34),

S₁₅ (9),

 $S_{14}(20),$ 

Г	$(CH_3)$	) ₃ SiIN	OSi	CH ₃	)a (	3)
Ł	\ ~~~	/J~~_]~`	~~~ (	~~~0	10 1	~ /

v gef.

687

227

355

506

971

644

300

713

604

351

687

186

242

227

n. b.

v ber.

691

229

366

508

969

107

640

281

717

608

330

694

183

251

218

# Diskussion

Die Normalkoordinatenanalyse der Verbindungen NH₂OH, 1, 3, 4 und 5 hat gezeigt, daß sich die Schwingungsspektren mit gleichbleibenden Sätzen von "Standardkraftkonstanten" bemerkenswert zuverlässig simulieren lassen. Dies bedeutet andererseits, daß in der Reihe der Alkyl- und Trimethylsilyl-hydroxylamine gleichbleibende Bindungsverhältnisse vorliegen, soweit dies aus identischen Kraftkonstanten gefolgert werden kann.

Besonders auffällig ist die mit 3,3 mdyn/Å sehr niedrige SiO-Kraftkonstante. Wie bereits erläutert, ist dieser Wert nicht zweifelsfrei, da wegen der möglichen Überlagerung mit o SiCH₃ nicht zu entscheiden ist, ob v SiO nicht doch bei etwa 850 cm⁻¹ liegt. Die SiN-Valenzkraftkonstante ist in 3 und 5 mit 3,2-3,5 (f SiN + f' SiN = 3,5) mdyn/Å zwar ähnlich wie im Hexamethyldisilazan, dies sollte jedoch nicht zu dem Schluß veranlassen, daß f SiO auch dem Hexamethyldisiloxan entsprechen sollte, denn es scheint, daß spezifisch in SiOSi-Brücken hohe SiO-Bindungsgrade und Kraftkonstanten auftreten.

Sieht man einmal von dieser Unsicherheit ab, so lassen sich alle Spektren zuverlässig zuordnen. Die NO-Bindung selbst wird weder durch Alkyl- noch Trimethylsilyl-Substitution beeinflußt, und ebenso sind keine Wechselwirkungen über die NO-Brücke hinweg registrierbar. Die NCA zeigt, wie ungeeignet Verschiebungen gekoppelter Valenzschwingungen zu Rückschlüssen auf die Bindungsverhältnisse sind; s. z. B. den Gang von v NO!

 $S_{15}(6)$ 

 $S_8$  (6)

 $S_8$  (8)

 $S_{13}(12)$ 

 $S_4$  (6)

 $S_{14}(6)$ 

 $S_8$  (18)

H. Bürger u. a.: Schwingungsspektren ...

Es ist nicht möglich, einen einzigen, exakten Kraftkonstantensatz für das  $NH_2OH$  zu finden, und erst recht nicht für die substituierten Hydroxylamine. Die von uns verwendeten Potentialkonstanten sind eine der vielen Möglichkeiten, die Frequenzen wiederzugeben. Daß sie, von Fragmenten (Methylamine, Methylhalogenide, Methanol, [(CH₃)₃Si]₂NH) entlehnt, praktisch ohne Modifizierung die Spektren der größeren Moleküle anzunähern gestatten, spricht für ihre sinnvolle Wahl. Wegen der starken Kopplungen dürften Rechenverfahren, die von charakteristischen Schwingungen ausgehen, bei den Hydroxylamin-Derivaten kaum zu übertragbaren und realen Kraftkonstanten führen.

#### Experimentelles

Alle Spektren wurden an authentischen^{1, 2} Proben, deren Reinheit durch Protonenresonanzspektren überprüft wurde, vermessen. Die Raman-Spektren registrierte ein Cary 81-Spektrograph an 7-mm-Flüssigkeitsküvetten; Polarisationszustände (nach der incident light-Methode) sind geschätzt. Genauigkeit der Raman-Frequenzen  $\pm$  3 cm⁻¹.

Zur Aufnahme der IR-Spektren stand für 8 und 9 ein Perkin-Elmer-221G-Gerät mit Gitter und NaCl/CsBr-Prismen zur Verfügung; Wellenzahlengenauigkeit  $\pm$  5 cm⁻¹. Alle anderen IR-Spektren wurden im Bereich von 4000 bis 70 cm⁻¹ zwischen KBr/CsBr/Lupolen-Fenstern als Filme geeigneter Schichtdicken mit einem Beckman IR-11/12-Gerät vermessen; Wellenzahlg auigkeit  $\pm$  2 cm⁻¹. Die Empfindlichkeit der Substanzen erforderte eine Probenvorbereitung im Stickstoffkasten.

Für die Lechnungen benutzten wir ein von Dr. *R. Mattes*, Münster, geschriebenes Rechenprogramm; die G-Matrizen wurden nach *Wilson*²⁵ aufgestellt.

Wir danken der Deutschen Forschungsgemeinschaft für die Bereitstellung der Spektrographen, Herrn Professor Dr. H. Cordes, Braunschweig, für die Erlaubnis zur Benutzung des Raman-Gerätes. Herrn Professor Dr. U. Wannagat, Braunschweig, gebührt unser Dank für die großzügige Förderung dieser Untersuchungen.

Eigentümer: Österreichische Akademie der Wissenschaften, Dr.-Ignaz-Seipel-Platz 2, A-1010 Wien. — Herausgeber: Österreichische Akademie der Wissenschaften, Dr.-Ignaz-Seipel-Platz 2, A-1010 Wien, und Verein Österreichischer Chemiker, Eschenbachgasse 9, A-1010 Wien. — Verlag: Springer-Verlag, Mölkerbastei 5, A-1010 Wien. — Für den Textteil verantwortlich: Prof. Dr. Friedrich Kuffner, Währinger Straße 38, A-1090 Wien. — Für den Anzeigenteil verantwortlich: Alois Hailwax, Paracelsusgasse 8, A-1030 Wien. — Druck: Adolf Holzhausens Nachfolger, Kandlgasse 19—21, A-1070 Wien.